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1. Introduction

In [1 – 4], three variants of a mechanism were proposed through which black holes can

spontaneously break an abelian gauge symmetry at finite temperature, leading to a form

of superconductivity. The symmetry breaking occurs through the formation of a super-

conducting condensate that floats above the horizon. To make the mechanism work, one

needs a charged matter field whose quanta form the superconducting layer, some interac-

tion which keeps it from falling into the black hole, and some feature which prevents it

from escaping to infinity. In the variants considered so far, the charged field is bosonic.

Charged fermions might also work, but then one has to establish some pairing mechanism

before condensation can occur.

The purpose of this paper is to provide another example of superconducting black

holes, closely related to the one in [4], and to argue that it exhibits a p-wave gap. All our

results will be based on classical solutions to field equations of Einstein-Yang-Mills theory

with a negative cosmological constant:

S =
1

2κ2

∫

d4x

[

R− 1

4
(F a

µν)2 +
6

L2

]

, (1.1)
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where F a
µν is the field strength of an SU(2) gauge field. As in [4], the plan is to regard a

U(1) subgroup as the gauge group of electromagnetism,1 and to persuade the off-diagonal

gauge bosons, charged under this U(1), to condense outside the horizon. Our conventions

on metric signature and field normalizations are the same as in [4]. The action (1.1) is

almost completely dictated at the two-derivative level by local diffeomorphism symmetry

and gauge symmetry, and it can be embedded in M-theory.2 This endows its solutions

with an interest independent of potential applications to superconductivity. Indeed, the

solutions to be considered are loosely related to those of [5, 6], from which a significant

literature has sprung, reviewed for example in [7, 8].

Section 2 is devoted to a conceptual overview of black holes which superconduct

through the mechanism described above. In section 3 we describe the background solutions

of interest. In section 4 we study the electromagnetic response, along the lines of [3]. We

find a frequency-dependent conductivity which depends strongly on the polarization of the

applied electric field. The low-frequency behavior is suggestive of quasi-particle excitations

whose dissipative mechanisms are entirely due to finite-temperature effects.

In section 5 we provide numerical evidence that the p-wave backgrounds are stable

against small perturbations that turn on a p+ ip gap. In section 5.2 we provide numerical

evidence that the p+ ip-wave backgrounds of [2] are unstable against small perturbations

that turn them into the p-wave backgrounds described in section 3. Our numerical ex-

plorations are far from covering the full range of parameters, but the simplest scenario

consistent with them is that p+ ip-wave backgrounds are always unstable, and that p-wave

backgrounds represent the thermodynamically preferred phase for T less than a critical

temperature Tc.

2. Conceptual overview

In the anti-de Sitter examples of [2 – 4], the superconducting layer floats above the horizon

because the horizon is also charged. Electrostatic repulsion overcomes the gravitational

attraction that ordinarily would suck the superconducting layer into the horizon. If the

spacetime were asymptotically flat, then (barring some special interactions such as con-

sidered in [1]) one expects that electrostatic repulsion would cause the superconducting

layer to be blown off to infinity. But asymptotically anti-de Sitter geometries prevent

this. Massive particles, no matter how strongly repelled from a horizon, cannot reach the

boundary of anti-de Sitter space. So they instead condense near the horizon, where “near”

means that the field profile is normalizable, carrying finite charge if the horizon is finite,

or finite charge density if the horizon has infinite extent. An analogy with the classic

two-fluid model of superconductors is possible: the charged horizon describes the normal

1More precisely, the boundary theory has a global SU(2) symmetry, and adding electromagnetism means

weakly gauging this U(1) in the boundary theory. By contrast, the gauging of the full SU(2) symmetry in

the gravity theory encodes aspects of the SU(2) current algebra dynamics in the boundary theory.
2Embedding (1.1) in string theory or M-theory involves a specific choice of the gauge coupling g, and it

has not been shown that any of the three variants [1, 2, 4] of superconducting black holes occurs in M-theory.

Also, M-theory constructions usually involve scalars that couple non-renormalizably to the gauge field and

may be an important ingredient in constructing symmetry breaking solutions.

– 2 –
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Figure 1: A superconducting condensate floats above a black hole horizon because of a balance

of gravitational and electrostatic forces. The condensate carries a finite fraction of the total charge

density, so there is more electric flux above the condensate than there is right at the horizon. A

massive charged particle, labeled ψ+, may be driven upward by the electrostatic force, but because

of the warped geometry of AdS4, its trajectory cannot reach the boundary. So ψ+ must participate

in the condensate if it doesn’t fall into the horizon. The frequency-dependent conductivity can

be found by calculating an on-shell amplitude for a photon propagating straight down into the

geometry.

component, and the condensate above it is the superconducting component. See figure 1.

In this analogy, it is important to recall that in the gauge-string duality [9 – 11], the extra

dimension r is not an additional flat dimension transverse to the sample; instead, it is a

way of organizing energy scales in the dual field theory, which is strictly 2 + 1-dimensional

and non-gravitational. Thus, although the condensate is “above” the horizon in the gravity

picture, it interpenetrates the normal state in the field theory picture.

In [4], where the bulk geometry is based on Einstein-Yang-Mills theory, it was shown

that there is a second order transition, with mean field theory exponents, between a non-

superconducting state at high temperatures, where all the charge is in the normal com-

ponent, and a superconducting state at low temperatures. A similar transition occurs for

black hole geometries based on gravity coupled to the Abelian Higgs model [3, 4, 12, 13].

Both for Einstein-Yang-Mills and for the Abelian Higgs model, the moduli space of black

hole solutions includes Reissner-Nordström anti-de Sitter black holes (hereafter RNAdS),

which describe the normal state,3 joining continuously onto a branch of symmetry-breaking

solutions. The simplest argument supporting this picture is based on studying linear per-

turbations of the charged field around an RNAdS solution. They obey an equation of the

3It has been suggested [14, 15] that RNAdS black holes are dual to a close analog of the pseudogap

state of high Tc materials. In the context of our constructions, this does not seem quite right, because the

fraction of charge in the condensate goes to zero near Tc, scaling as Tc − T , whereas the transition from

superconductivity to the pseudogap state appears to take place while this fraction is finite and non-zero.

– 3 –
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form

(�−m2
eff)ψ = 0 , (2.1)

where � is an appropriate covariant wave operator and

m2
eff = m2 + gttq2Φ2 . (2.2)

Here q is the charge of a quantum of the charged bosonic field ψ: in the Abelian Higgs case,

it is a complex scalar, while in the Einstein-Yang-Mills case, it is a complex combination of

non-abelian gauge bosons. Φ is the electrostatic potential, which vanishes at the horizon

but grows quickly outside it if the electric field is strong. The metric component gtt is

negative in the conventions we use, and it diverges to −∞ at the horizon, so (2.2) implies

that ψ is tachyonic near the horizon if q is big enough and m is small enough, provided also

that the horizon carries sufficient charge.4 It is a matter of calculation to determine when

(2.1) admits a static solution. When it does, one may reasonably assume that it signifies

the joining of a branch of symmetry breaking solutions onto the RNAdS solutions. And one

may calculate a critical temperature Tc where the joining occurs. It does not necessarily

follow that Tc is the temperature of a second order phase transition: it could be that the

solutions which only slightly break the symmetry are thermodynamically disfavored, and

that a first order transition to solutions with finite symmetry breaking occurs at a different

temperature. Explicit calculations of the free energy, as in [4], are necessary in order to

determine the phase diagram. But even the calculations of [4] are not enough: one must

also ask whether a solution is stable under small perturbations. At least for a certain range

of parameters, we will show in section 5.2 that the solutions of [4] are unstable against a

perturbation that seems likely to turn them into p-wave solutions of the form described in

section 3. We have not yet found an unstable perturbation of the p-wave solutions, or of

the s-wave solutions described in [2, 3].

In [3], the response of superconducting black holes to electromagnetic probes was

studied. The black holes in question were constructed along the lines of the proposal

of [2], by coupling the Abelian Higgs model to gravity, but a simplification was achieved by

assuming that q is large. Provided T is not too small relative to the charge density of the

horizon, this implies that the back-reaction of both the gauge field and the charged scalar

on the metric can be neglected. A similar limit was considered in [4] for the Einstein-Yang-

Mills case, where by taking the gauge coupling large and avoiding the regime of very small

temperatures, one may similarly neglect back-reaction of the matter fields on the metric.

A related limit of the proposal of [2] was studied in [16] in the presence of magnetic field,

leading to partial localization of the condensate in one of the spatial directions on the

boundary. Also in the no-back-reaction limit, the effects of critical magnetic fields and

vortices have been studied in [17, 18].

4Actually, the most commonly considered cases have m2 < 0 in the case of scalars, or m = 0 for non-

abelian gauge bosons. The argument about massive particles’ trajectories never reaching the boundary of

anti-de Sitter space then no longer holds up, but it is replaced by standard notions of boundary conditions

in anti-de Sitter space which again lead to normalizable condensates.
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The quantity of primary interest in understanding the electromagnetic response is the

conductivity,

σij(ω) =
i

ω
GR

ij(ω, 0) , (2.3)

where

GR
mn(ω,~k) = −i

∫

d3x eiωt−i~k·~xθ(t)〈[Jm(t, ~x), Jn(0, 0)]〉 (2.4)

is the retarded Green’s function of the electromagnetic current Jm.5 The angle brackets

in (2.4) denote expectation values at finite temperature, namely

〈A〉 ≡ 1

Z
tr e−βHA Z ≡ tr e−βH (2.5)

for any operator A. The hermitian part of σij is dissipative, while the anti-hermitian part

is reactive.6 According to a spectral decomposition, the hermitian part of σij should be

positive semi-definite. To see this, first note that the spacetime dependence of the hermitian

operators Ji(t, ~x) is found through

Ji(t, ~x) = eiHt−i ~P ·~xJi(0, 0)e
−iHt+i ~P ·~x . (2.6)

Introducing a complete set of states between the two operators in (2.4) and integrating

over t and ~x one obtains

GR
ij(ω, 0) =

1

Z

∑

n,m

(2π)2δ(2)(~Pnm)Jnm
i Jmn

j

e−βEn − e−βEm

ω + Enm + i0
, (2.7)

where

Jnm
i = 〈n|Ji(0, 0)|m〉 ~Pnm = ~Pn − ~Pm Enm = En − Em , (2.8)

~Pn and En being the eigenvalues of ~P and H in the state |n〉. Plugging (2.7) into (2.3) one

straightforwardly obtains

1

2
(σij + σ∗ji) =

∑

n,m

Jnm
i Jmn

j Anm

Anm =
1

Z
(2π)3δ(2)(~Pnm)δ(ω + Enm)e−β En+Em

2

sinh βω
2

ω
. (2.9)

Formally, Anm ≥ 0, so multiplying the first equation in (2.9) by an arbitrary column vector

vj to the right and by its adjoint v∗i to the left yields

v∗i
1

2
(σij + σ∗ji)vj =

∑

n,m

|v∗i Jnm
i |2Anm ≥ 0 , (2.10)

5Our convention for indices is that i and j run over the spatial directions x and y; m and n run over

the boundary directions t, x, and y; and µ and ν run over the bulk directions t, x, y, and r. We will later

introduce adjoint indices a and b for the non-abelian gauge group SU(2).
6In the theory of AC circuits it is standard to consider the complex power S =

R

d2x E∗

i ji =
R

d2x E∗

i σijEj , whose real and imaginary parts are the real and reactive powers, respectively. The real power

P can therefore be expressed in terms of the hermitian part of σij through P =
R

d2x E∗

i
1

2
(σij + σ∗

ji)Ej ,

while the reactive power Q =
R

d2x E∗

i
1

2i
(σij − σ∗

ji)Ej corresponds to the anti-hermitian part.

– 5 –
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proving that, indeed, the hermitian part of σij is positive semi-definite.

The conductivity σij(ω) characterizes the response to light of frequency ω which is

incident on the superconductor in a direction normal to the R2,1 that the sample occupies.

So it is perhaps intuitive that to calculate σij(ω) for the black hole, one should send

photons down from the boundary of AdS4 and inquire how they are absorbed or reflected

by the condensate and the horizon. More precisely, one uses the gauge-string duality to

extract two-point functions from tree-level propagation of photons. The prescription for

computing such Green’s functions was first articulated in [10, 11]. An adaptation of it

to thermal backgrounds was correctly guessed in [19] and then derived from the original

prescription of [10, 11] in [20] using Schwinger-Keldysh contours.7 In the case of two-point

functions, the gauge-string prescription is closely related to D-brane black hole absorption

amplitudes computed in a long series of papers beginning with [22]. If one expresses an

asymptotically AdS4 background as

ds2 =
r2

L2
(−dt2 + dx2 + dy2) +

L2

r2
dr2 + (corrections) , (2.11)

where the terms shown explicitly are the leading large r behavior, then a complexified

photon perturbation polarized in the x direction can be expanded for large r as

Ax = e−iωt

[

A(0)
x +

A
(1)
x

r
+O

(

1

r2

)]

, (2.12)

and the retarded Green’s function is given simply by

GR
xx(ω, 0) = − 2

κ2

A
(1)
x

A
(0)
x

, (2.13)

where κ =
√

8πGN is the gravitational coupling, and it is assumed that the photon wave-

function is purely infalling at the horizon. More sophisticated examples have been dis-

cussed, for example, in [23].

In the superconducting phase of the black holes constructed using the Abelian Higgs

model, σxx = σyy and σxy = 0 because the order parameter is a scalar, breaking gauge

invariance but not rotational invariance. There is a delta-function spike in Reσxx(ω) at

ω = 0, and an associated pole in Imσxx(ω). For non-zero ω and T not too close to Tc,

Re σxx(ω) is very small up to a finite frequency, which can be denoted ωg = 2∆ in order

to evoke a comparison with BCS theory: ∆ is then to be compared with the quantity

denoted by the same letter in BCS, whose physical interpretation is the minimal energy of

a single normal-component quasi-particle excitation. Above ωg, Reσxx(ω) rises quickly to

a plateau and then asymptotes to a constant as ω → ∞. One can argue, along the lines

of [24], that the delta-function spike at ω = 0 had to be there because of the broken gauge

invariance. But the existence of a gap is additional information, revealed by the calculations

7Modulo some issues related to behavior near ω = 0, this prescription can also be justified [21] by the

fact that if one analytically continues GR
ij(ω) to the upper half-plane, then at the Matsubara frequencies

ωn = 2πnT with n > 0 it agrees with the corresponding Fourier mode of the Euclidean correlator computed

from the prescription proposed in [10, 11].

– 6 –
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of [3] but apparently not necessitated by symmetry principles. In BCS theory, the gap arises

because of a pairing mechanism of otherwise nearly free quasi-particle excitations of a Fermi

surface. No such mechanism is manifest in the gravity description; instead, the simplest

way to characterize the gravity calculation is that photons with frequency less than 2∆ are

very unlikely to penetrate through the condensate and be absorbed by the horizon. There

is clearly something in common between BCS theory and the gravitational calculation,

because the horizon represents the dynamics of the uncondensed charge carriers (i.e. the

normal component), and absorption of a photon with ω > 0 is associated with an excitation

of these carriers. The obvious difference is that the charge carriers in the gravitational

calculation (or, more precisely, the charge carriers in the appropriate holographic dual

description) are strongly coupled even when they are in the normal state.

The strong coupling inherent in gauge-string duals in the gravity approximation raises

the appealing possibility that black hole constructions might provide useful physical analo-

gies to the mysterious dynamics of electrons in high Tc materials that go beyond traditional

ideas based on quasi-particle excitations of Fermi surfaces. But the black holes we study

provide anything but a microscopic understanding of superconductivity: the gravity de-

scription is more like Landau-Ginzburg theory, and the dual field theory would be the

venue for some attempt at a microscopic theory comparable to BCS.

Rather than presenting superconducting black holes as an incipient theory of high Tc,

we prefer the viewpoint that they are a new theoretical laboratory, seemingly divorced from

traditional perturbative concepts, but capable of exhibiting assorted phenomena reminis-

cent of real materials. Perhaps a sufficiently comprehensive understanding of their dynam-

ics will suggest new ideas which can also be applied successfully to real materials.

The purpose of the present paper is to narrow the gap between black hole constructions

and interesting high Tc materials by introducing black holes with a p-wave gap. Although

it is apparently a d-wave gap that controls the dynamics of the cuprates, d-wave and p-wave

are similar in that excitations of the normal component can be probed using low-frequency

photons.

3. The backgrounds

We follow the conventions of [4] for the metric and gauge field, except for denoting the

spatial directions of R2,1 as x and y rather than x1 and x2. We will restrict attention to

the limit of large g, where the metric is simply AdS4-Schwarzschild,

ds2 =
r2

L2

[

−
(

1 − r3H
r3

)

dt2 + dx2 + dy2

]

+
L2

r2
dr2

1 − r3H/r
3
. (3.1)

The gauge field ansatz is

A = Φ(r)τ3dt+ w(r)τ1dx . (3.2)

It is convenient to define

Φ̃ = gL2Φ w̃ = gL2w . (3.3)

– 7 –
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If one also fixes a scale by setting rH = 1, then the relevant Yang-Mills equations are

Φ̃′′ +
2

r
Φ̃′ − 1

r(r3 − 1)
w̃2Φ̃ = 0

w̃′′ +
1 + 2r3

r(r3 − 1)
w̃′ +

r2

(r3 − 1)2
Φ̃2w̃ = 0 , (3.4)

where primes denote d/dr. These equations are similar to (B4) of [4] because the ansatz

(3.2) is also similar. But in [4], the symmetry breaking term takes the form w(τ1dx+τ2dy),

which corresponds to wrapping the part of the gauge group generated by τ3—call it U(1)3—

around the rotational symmetry group SO(2) that acts on x and y. Choosing instead

w(τ1dx − τ2dy) corresponds to wrapping U(1)3 the other way around SO(2). We think

of (3.2) heuristically as a superposition of the two different wrapping solutions, in the

same way that linearly polarized light is a superposition of left-handed and right-handed

polarizations. This analogy has limited utility because the Yang-Mills equations governing

the different “polarizations” are non-linear.

In addition to breaking U(1)3, the condensate wτ1dx picks out the x direction as

special. Therefore, if back-reaction of the Yang-Mills field on the metric were included,

then we would not expect to be able to set gxx = gyy, as we did in (3.1). The wrapping

condensate w(τ1dx+ τ2dy) is simpler in this regard, because although it breaks U(1)3 and

SO(2) separately, it preserves a diagonal subgroup which makes the stress tensor isotropic

in the x and y directions.

The temperature of the horizon is

T =
3

4πL2
, (3.5)

where, as before, we have set rH = 1. The total charge density ρ is proportional to the τ3

part of the electric field at infinity: if

Φ = p0 +
p1

r
+O

(

1

r2

)

, (3.6)

then

ρ = − p1

Lκ2
. (3.7)

The charge density ρn in the normal component is proportional to the τ3 part of the electric

field at the horizon: if

Φ = Φ1(r − 1) +O[(r − 1)2] , (3.8)

then

ρn =
Φ1

Lκ2
. (3.9)

Far-field and near-horizon expansions for the rescaled fields Φ̃ and w̃ take the form

Far field:

{

Φ̃ = p̃0 + p̃1

r + . . .

w̃ = W̃1

r + . . .
(3.10)

Near horizon:

{

Φ̃ = Φ̃1(r − 1) + . . .

w̃ = w̃0 + w̃2(r − 1)2 + . . . ,
(3.11)

– 8 –
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Figure 2: Each point along the contours plotted represents a solution to the non-linear boundary

value problem specified by (3.4), (3.10), and (3.11). Points on the line labeled “normal” are RNAdS

solutions, and if charge density is held fixed, temperature rises as one moves to the left. Points on

the curve labeled “superconducting” break the abelian gauge symmetry generated by U(1)3. Points

on the other curves also break the abelian gauge symmetry but are expected to be unstable. The

point where the superconducting solutions join onto the normal solutions is labeled Tc because the

simplest scenario is for there to be a second order phase transition at this point.

and it is convenient to introduce rescaled versions of the total and normal component

charge densities:

ρ̃ ≡ κ2gL2ρ = − p̃1

L

ρ̃n ≡ κ2gL2ρn =
Φ̃1

L
. (3.12)

We also define the superconducting charge density as ρ̃s = ρ̃ − ρ̃n. A natural choice of

order parameter is W̃1, because the SU(2) currents Ja
m dual to the gauge bosons Aa

µ have

a symmetry-breaking expectation value

〈Ja
i 〉 ∝ W̃1δ

1
i δ

a
1 . (3.13)

There is a one-parameter family of “allowed” solutions to the Yang-Mills equations

(3.4), where allowed means that the far-field and near-horizon asymptotic forms, (3.10)

– 9 –
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Figure 3: The fraction ρ̃s/ρ̃ of the charge carried by the superconducting condensate and the order

parameter W̃1 are plotted against the rescaled temperature T/
√
ρ̃. At Tc, ρ̃s/ρ̃ vanishes linearly,

while W̃1 vanishes as
√
Tc − T .

and (3.11), are satisfied. Thus (3.4), (3.10), and (3.11) specify a non-linear boundary

value problem. To understand why there is only a one-parameter family of solutions, let

us examine the far-field and near-horizon expansions separately. The generic solution to

(3.4) includes a constant term W̃0 in the far-field expansion of w̃, and this is disallowed

because it corresponds to deforming the field theory lagrangian by some multiple of J1
1 .

Another way to describe why W̃0 is disallowed is that if it is non-zero, then the condensate

is not normalizable. In the expansion (3.10), all three parameters shown explicitly are

independent, which matches a simple counting argument: four integration constants (for

two second order differential equations) minus one (for the constraint W̃0 = 0) equals

three. Requiring that the gauge field is smooth and well-defined at the horizon leads to

the expansions (3.11). The parameters Φ̃1 and w̃0 are independent, but w̃2 and higher

coefficients can be determined in terms of them. Having only two independent parameters

in the near-horizon expansion (i.e. Φ̃1 and w̃0) means that there are two constraints at the

horizon. Generically, these two constraints will be independent of the far-field constraint

W̃0 = 0. So there are three constraints total on four integration constants, leading indeed to

a one-parameter family of solutions. At special points, one of the horizon constraints may

become degenerate with the far-field constraint, and this is when one finds two branches

of solutions joining together.

Solutions to the boundary value problem discussed in the previous paragraph can be

generated using a “shooting” procedure. First one guesses numerical values of Φ̃1 and

w̃0. Then one uses the near-horizon expansion (3.11) to seed a finite-element differential

equation solver, such as Mathematica’s NDSolve. Next one matches the numerical solution

to the far-field expansion (3.10), augmented by a constant term W̃0. In this way one finds

W̃0 as a function of Φ̃1 and w̃0. The zeroes of this function correspond to the solutions of

the boundary value problem: see figure 2. Hereafter we restrict attention to solutions where

w̃(r) has no nodes. There are additional solutions with nodes, but one generally expects

them to be thermodynamically disfavored, because radial oscillations in w̃ cost energy.

Thermodynamic quantities for solutions along the node-free symmetry-breaking branch

labeled “superconducting” in figure 2 are plotted in figure 3.
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4. Electromagnetic perturbations

By making the black hole charged under the gauge symmetry U(1)3 generated by τ3, we

explicitly break the SU(2) gauge group down to U(1)3. We interpret U(1)3 as the gauge

group of electromagnetism, which means that we plan to consider a weak gauging of this

group in the boundary theory.8 As discussed in the introduction, the linear response to

electromagnetic probes is described by the two-point function of the U(1)3 current, and

in the dual black hole, this means that we want to know how linear perturbations of the

τ3 component of the gauge field propagate. We persist in choosing the spatial momenta

ki = 0 in the x and y directions, so the photon is directed straight down into AdS4, as

illustrated in figure 1.

As a warmup, we work out in section 4.1 the conductivity in two examples where it

can be done analytically, including the normal state, where the condensate w̃ is set to 0.

In section 4.2 we explain how to set up the perturbation equations in the more difficult

case of a symmetry-breaking background as described in section 3. In sections 4.3 and 4.4

we present results of a numerical study of σxx(ω) and σyy(ω) which reveal a p-wave gap.

4.1 Analytical calculations

The simplest case to start with is pure AdS4, corresponding to zero temperature, zero

charge density, and no symmetry breaking. At the linearized level, the gauge coupling of

SU(2) doesn’t enter, so we will pass to free Maxwell theory in AdS4: that is,

S =
1

2κ2

∫

d4x
√−g

[

R− 1

4
F 2

µν +
6

L2

]

. (4.1)

The perturbation calculation is simple because the background geometry is conformally

flat:

ds2 =
L2

z2

(

−dt2 + dx2 + dy2 + dz2
)

. (4.2)

Equivalently, we may consider the line element (3.1) with rH = 0: it is the same as (4.2)

if one sets

z = L2/r . (4.3)

Conformal flatness is special because Maxwell’s equations respect conformal symmetry.

Thus the complexified photon perturbation is a plane wave:

Ax = e−iω(t−z) . (4.4)

We chose the plane wave solution that moves in the positive z direction: that is, it moves

away from the conformal boundary at z = 0 and toward the degenerate Killing horizon of

the Poincaré patch, at z = ∞. (In figure 1, the positive z direction is downward.) This

choice means that we will wind up computing the retarded Green’s function rather than the

8This situation is analogous to the Hubbard model, which has (at least) a global U(2) symmetry. The

central U(1) is identified as the electromagnetic gauge symmetry, but electromagnetism is not explicitly

part of the model.
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advanced one. The Green’s function can be read off from an expansion near the conformal

boundary:

Ax = e−iωt(1 + iωz + . . .) = e−iωt

(

1 +
iωL2

r
+ . . .

)

. (4.5)

Comparing the last expression in (4.5) to (2.12), and using (2.3) and (2.13), one finds

σxx = σ∞ ≡ 2L2

κ2
. (4.6)

Because of rotation invariance, σyy = σxx and σxy = 0. Hereafter we will normalize all

conductivities against σ∞ by defining

σ̃ij =
σij

σ∞
. (4.7)

Putting (2.3), (2.13), (4.6), and (4.7) together, one has

σ̃xx = − i

ωL2

A
(1)
x

A
(0)
x

. (4.8)

A surprising result of [25] is that σ̃xx = σ̃yy = 1 for the AdS4-Schwarzschild solution

(3.1), for all ω and T . In the approximation where the gauge field (3.2) doesn’t back-

react on the metric, this result persists so long as w̃ = 0. The quickest way to derive

it is to compute directly the linearized equations of motion for complexified gauge field

perturbations of the background (3.1)–(3.2): that is, A→ A+ a, where

a = e−iωta3
x(r)τ3dx . (4.9)

The result of plugging this perturbation into the linearized Yang-Mills equations is
[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2

]

a3
x = 0 , (4.10)

where we have set rH = 1 as usual. Because the rotational symmetry is unbroken in the

absence of the condensate, the same equation governs a3
y perturbations. The solution to

(4.10) describing gauge bosons falling into the horizon at r = 1 is

a3
x = (r − 1)−iω/4πT (r2 + r + 1)iω/8πT

(

r + 1
2 + i

√
3

2

r + 1
2 − i

√
3

2

)

√
3ω/8πT

, (4.11)

where we have used (3.5). The behavior a3
x ∝ (r − 1)−iω/4πT is typical of solutions falling

into a finite-temperature horizon. The expansion of (4.11) near the conformal boundary is

the same as (4.5) through order 1/r, so the conductivity is the same, as claimed.

4.2 Electromagnetic perturbations of the superconducting phase

In the presence of the condensate w̃τ1dx, perturbations of the form (4.9) mix with other

components at the level of linearized equations. An ansatz which is sufficiently general to

obtain consistent linearized equations is A→ A+ a, where

a = e−iωt
[

(a1
t τ

1 + a2
t τ

2)dt + a3
xτ

3dx+ a3
yτ

3dy
]

. (4.12)
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All the aa
m are functions of r. Plugging the perturbation (4.12) into the linearized Yang-

Mills equations, one finds that the a3
y mode obeys an equation of motion decoupled from

the others:
[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2
− w̃2

r(r3 − 1)

]

a3
y = 0 . (4.13)

This is identical to (13) of [3], except that the last term has slightly different radial de-

pendence. Unsurprisingly, the rescaled complex conductivity σ̃yy exhibits similar gapped

behavior to what was found in [3]: see figure 4. Because the analysis is so similar to [3],

we will not discuss it further here, but simply present the results in sections 4.3 and 4.4.

The linearized Yang-Mills equations mix a3
x with a1

t and a2
t , resulting in three second

order equations of motion,

[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

ω2L4r2

(r3 − 1)2

]

a3
x − r2Φ̃w̃

(r3 − 1)2
a1

t −
iωL2r2

(r3 − 1)2
a2

t = 0

[

∂2
r +

2

r
∂r

]

a1
t +

Φ̃w̃

r(r3 − 1)
a3

x = 0

[

∂2
r +

2

r
∂r −

w̃2

r(r3 − 1)

]

a2
t −

iωL2w̃

r(r3 − 1)
a3

x = 0 , (4.14)

and two first-order constraints,

iωL2(a1
t )

′ + Φ̃(a2
t )

′ − Φ̃′a2
t = 0

iωL2(a2
t )

′ − Φ̃(a1
t )

′ + Φ̃′a1
t −

(

1 − 1

r3

)

[

w̃∂r − w̃′] a3
x = 0 , (4.15)

where, as before, primes mean d/dr. The constraints are not independent of the equations

of motion: if one takes the r derivative of each constraint, the resulting second order equa-

tion follows algebraically from the equations of motion and the undifferentiated constraints.

It takes six constants of integration to specify a solution to the equations of motion, but

two of them are used up in satisfying the constraints, leaving four independent solutions.

Of these, two can be found in closed form and are related to residual gauge invariance,

as we will discuss in more detail below. There is also a solution describing gauge bosons

falling into the horizon, and another describing gauge bosons coming out.

Let’s focus on the infalling solution, which determines a retarded Green’s function, as

we have seen in easier examples above. Near the horizon,

a3
x = (r − 1)−iω/4πT

[

1 + a3(1)
x (r − 1) + a3(2)

x + . . .
]

a1
t = (r − 1)−iω/4πT

[

a
1(2)
t (r − 1)2 + a

1(3)
t (r − 1)3 + . . .

]

a2
t = (r − 1)−iω/4πT

[

a
2(1)
t (r − 1) + a

2(2)
t (r − 1)2 + . . .

]

, (4.16)

and all the coefficients a
a(s)
m can be determined once the background and ω are specified.
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Near the conformal boundary, a generic solution to the equations of motion takes the form

a3
x = A3(0)

x +
A

3(1)
x

r
+ . . .

a1
t = A

1(0)
t +

A
1(1)
t

r
+ . . .

a2
t = A

2(0)
t +

A
2(1)
t

r
+ . . . , (4.17)

and the constraints impose the relations

iωL2A
1(1)
t + p̃0A

2(1)
t − p̃1A

2(0)
t = 0

iωL2A
2(1)
t − p̃0A

1(1)
t + p̃1A

1(0)
t + W̃1A

3(0)
x = 0 , (4.18)

where the coefficients p̃s and W̃1 are the ones appearing in (3.10). The infalling solution is

unique up to an overall scaling, which is fixed once we choose the leading behavior of a3
x

to be (r− 1)−iω/4πT as in the first line of (4.16). Thus the far-field coefficients A
a(s)
m are in

principle known as functions of ω once the background is specified. We claim that

σ̃xx = − i

ωL2A
3(0)
x

(

A3(1)
x + W̃1

iωL2A
2(0)
t + p̃0A

1(0)
t

p̃2
0 − ω2L4

)

. (4.19)

The first term in parentheses is the expected result based on the considerations of (2.3)–

(2.13). The second term has to do with solutions to (4.14) and (4.15) which are pure gauge

outside the horizon, as we will now explain.

An infinitesimal gauge transformation of the SU(2) gauge field takes the form δA = Dα,

whereD = d+gA is the gauge-covariant derivative and α is an adjoint scalar gauge function.

Let’s consider the case

α = e−iωtαaτa . (4.20)

After performing the split A → A + a of the gauge field into background and fluctu-

ating parts, we can view the infinitesimal gauge transformation as acting only on a =

e−iωtaa
µτ

adxµ:

δ(e−iωtaa
µ) = ∂µ(e−iωtαa) + gǫabcAb

µe
−iωtαc . (4.21)

If any αa depends on r, then the gauge-transformed perturbations will include components

aa
r which weren’t present in the original ansatz (4.12). Setting these components to zero

amounts to choosing a form of axial gauge, and the gauge transformations that preserve

axial gauge are the ones where αa doesn’t depend on r. Dependence on x1 and x2 is

excluded because we are always considering modes with zero spatial momentum. We also

set α3 = 0 because it would introduce components of the perturbations that are not present

in the ansatz (4.12). To summarize: only gauge transformations of the form (4.21) where

α1 and α2 are constant and α3 = 0 preserve the ansatz (4.12). The explicit form of this

restricted set of gauge transformations is

δa3
x = w̃α̃2

δa1
t = −iωL2α̃1 − Φ̃α̃2

δa2
t = −iωL2α̃2 + Φ̃α̃1 , (4.22)
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where in order to simplify notation we have defined α̃a = αa/L2. It is readily checked

that the expressions in (4.22) solve the equations of motion (4.14) and the constraints

(4.15). This had to happen because (4.14)–(4.15) came from the gauge-invariant Yang-

Mills equations. These are the two closed-form solutions which we mentioned in the text

following (4.15).

Up to an overall scaling, there is a unique linear combination of a3
x, a

1
t , and a2

t which

is invariant under the gauge transformation (4.22):

â3
x = a3

x + w̃
iωL2a2

t − Φ̃a1
t

Φ̃2 − ω2L4
. (4.23)

The conductivity σ̃xx captures some gauge-invariant information about the bulk theory,

and as such it must be expressible in terms of â3
x. If one expands

â3
x = Â3(0)

x +
Â

3(1)
x

r
+ . . . (4.24)

near the conformal boundary, then the unique extension of (4.8) that respects the gauge

invariance is

σ̃xx = − i

ωL2

Â
3(1)
x

Â
3(0)
x

. (4.25)

This is precisely the result (4.19) that we claimed earlier. In appendix A we describe how

σ̃xx fits into a 3× 3 matrix of conductivities which can all be determined in terms of A
3(0)
x

and A
3(1)
x .

4.3 Results of numerics

Let us review the structure of the problem before discussing results. The gauge field back-

ground (3.2) is constructed by numerically solving the Yang-Mills equations (3.4) in a fixed

gravitational background, (3.1), subject to constraints near the conformal boundary and

near the horizon, (3.11) and (3.10) respectively. From a numerical solution, one can pick

out the parameters p̃0, p̃1, and W̃1 appearing in (4.19). A symmetry-breaking background

with w̃ > 0 everywhere is labeled uniquely by the value of T/
√
ρ̃, which has a maximum

value of approximately 0.125. It is interesting that this value is within numerical error

of 1/8, but we don’t see any reason why it should be exactly 1/8. With a numerically

constructed background in hand, one chooses a value of ω, initializes a finite-element dif-

ferential equation solver close to the horizon using the series expansion (4.16), solves (4.14),

and extracts the coefficients A
3(0)
x , A

3(1)
x , A

1(0)
t , and A

2(0)
t appearing in (4.19) by comparing

the far-field behavior of the numerical solution with the expansions (4.17). It is impor-

tant to note that ω and L appear in the differential equations (4.14) and the conductivity

formula (4.19) only in the combination

ωL2 =
3

4π

ω

T
, (4.26)

where we have used (3.5). (Recall that we have set rH = 1. If we had not, the left

hand side of (4.26) would be instead ωL2/rH , because then T = 3rH/4πL
2.) Thus it
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is more precise to say that one chooses a numerical value for the dimensionless quantity

ω/T and determines σ̃xx, which is also dimensionless, in terms of it. One expects that

for large enough ω/T , σ̃xx → 1. This is because the condensate involves dynamics with

a characteristic energy scale, which turns out to be
√
ρ̃. Provided we avoid the extreme

limit T → 0,
√
ρ̃ and T are comparable. If ω ≫ √

ρ̃, the propagation of the gauge bosons

should be largely insensitive to the condensate: instead, its wave function approximately

takes the form (4.4) that we found for photons in pure AdS4, and σxx ≈ σ∞.

Numerical computations can only detect the continuous part of σ̃xx(ω), but there is

also a distributional part with some interesting structure. Because σ̃xx(ω) is proportional

to a retarded Green’s function, it is analytic on the upper half-plane of complex ω. It

therefore satisfies the Kramers-Kronig relations:

Re[σ̃xx(ω) − 1] =
1

π
P
∫ ∞

−∞
dω′ Im σ̃xx(ω

′)

ω′ − ω

Im σ̃xx(ω) = − 1

π
P
∫ ∞

−∞
dω′ Re[σ̃xx(ω′) − 1]

ω′ − ω
. (4.27)

The reason that σ̃xx − 1 appears in (4.27) rather than σ̃xx itself is that it is σ̃xx − 1 which

vanishes as ω → ∞, and such vanishing is a necessary condition in order to obtain (4.27)

from a contour integral in the upper half-plane. P denotes the principle part of the integral.

Evidently, a simple pole in Im σ̃xx(ω) at ω = ω0 implies a delta-function contribution

δ(ω−ω0) to Re σ̃xx(ω). The positivity constraint on the real part of conductivities applies

separately to the continuous and delta-function parts of Re σ̃xx(ω), so any pole of Im σ̃xx(ω)

on the real axis must have positive residue.

Plots of σ̃xx(ω) and σ̃yy(ω) are shown in figure 4. The conspicuous features are:

1. σ̃xx and σ̃yy both approach 1 as ω becomes large, as expected on general grounds.

2. σ̃yy displays gapped dependence similar to the findings of [3], with ∆ ≈ 1
2

√
ρ̃. That

is, Reσ is very small in the infrared, then rises quickly at ω = 2∆ ≡ ωg ≈ √
ρ̃, with

a slight “bump” a little above ωg that is reminiscent of the behavior expected for

fermionic pairing. We use the notation ωg even though it’s not clear that Re σ̃yy is

strictly zero for 0 < ω < ωg.

3. There is a pole in Im σ̃xx at ω = ω0 ≈ 1.8
√
ρ̃. Its residue becomes small as one

approaches Tc. It’s clear from (4.19) that this pole had to arise, with residue pro-

portional to the order parameter W̃1: it comes from the denominator of the second

term, and

ω0 =
4π

3
p̃0T . (4.28)

As discussed following (4.27), there is a delta-function contribution to Re σ̃xx at

ω = ω0, whose coefficient is proportional to the residue of this pole. This resonance

is perfectly stable even at finite temperature, but perhaps if we relax some of the

limits we have taken (like large N) it would acquire a width.

4. Re σ̃xx never goes as low as Re σ̃yy, and its rise toward 1 happens more gradually and

at a somewhat larger value of ω, on order ω0.
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Figure 4: Rescaled conductivities σ̃xx and σ̃yy as functions of frequency. The dotted curves are

the best fits of the Drude model prediction (4.29) to Re σ̃xx(ω) at low ω.

5. The small ω behavior of Re σ̃xx can be parameterized very accurately in terms of the

Drude model, which predicts

ReσDrude =
σ0

1 + ω2τ2
, (4.29)

where σ0 = ne2τ/m is a constant related to the density of charge carriers, and τ is

the scattering time.
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We are especially interested in the low-frequency dependence of the conductivities. Our

numerical results make it plausible but not certain that σyy is strictly zero below a finite

value of ω when T = 0. However, neglecting the back-reaction of the gauge field may not

be a valid approximation for very low temperatures. On the other hand, the narrow Drude

peak in σ̃xx suggests conductivity due to quasi-particles whose scattering time diverges as

T → 0. Putting the behavior of σ̃xx and σ̃yy together suggests a very special type of “node

in the gap,” namely one which is infinitely narrow as a function of angle in Fourier space.9

4.4 Fits of temperature-dependent quantities

In order to extract some simple quantitative information from our numerical results, we

considered the dependence of various dimensionless quantities on the rescaled temperature

T/
√
ρ̃. Our findings can be summarized briefly as follows:

ρ̃

ρ̃n
≈ exp

{

0.303

√
ρ̃

T
− 2.20

}

W̃1

ρ̃
≈ 1 − 167

(

T√
ρ̃

)3.05

ρ̃2
n

ρ̃T
τ ≈ 4.5

ρ̃

ρ̃2
nτ

2
lim
ω→0

Re σ̃xx(ω) ≈ 0.302

(

ρ̃

ρ̃n

)2

lim
ω→0

Re σ̃yy(ω) ≈ 0.34

lim
ω→0

ω√
ρ̃

Im σ̃xx(ω) ≈ 0.52

lim
ω→0

ω√
ρ̃

Im σ̃yy(ω) ≈ 0.55

lim
ω→ω0

ω − ω0√
ρ̃

Im σ̃xx(ω) ≈ 0.28 . (4.30)

The approximately equalities in (4.30) are in some cases quite close over a substantial range

of
√
ρ̃/T , and in others represent no more than a T → 0 extrapolation: see figure 5. None

of the relations (4.30) should be taken too seriously, because they were made over intervals

where T/
√
ρ̃ varied only by a factor of 5.

A particularly challenging case is the quantity limω→0
ω√
ρ̃

Im σ̃xx(ω). The ω → 0 limit

converges slowly because of a “shelf effect:” for values in a region around ω ∼ 1/τ , we

observed ω√
ρ̃

Im σ̃xx ≈ 0.55 at low temperatures, which is the same value as we find in the

ω → 0 limit for ω√
ρ̃

Im σ̃yy. But for ω <∼ 1/50τ , we observed instead the value some 6%

smaller quoted in (4.30). Our numerical algorithms aren’t optimized for extremely small T

and ω, and it’s possible that this shelf effect goes away at very small T , so that the residues

of Im σ̃xx and Im σ̃yy agree in this limit. But the balance of evidence from our numerical

exploration is that this does not happen, or happens very slowly as T is decreased.

9We thank D. Huse and P. Ong for discussions that led to the picture of an infinitely narrow node

described here.
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Figure 5: Temperature-dependent quantities and approximate fits, as explained in (4.30) and

the surrounding text. We have defined σ̃xx,0 = limω→0 Re σ̃xx(ω), σ̃yy,0 = limω→0 Re σ̃yy(ω),

Resω=0 Im σ̃xx/
√
ρ̃ = limω→0

ω√
ρ̃

Im σ̃xx(ω), Resω=0 Im σ̃yy/
√
ρ̃ = limω→0

ω√
ρ̃

Im σ̃yy(ω), and

Resω=ω0
Im σ̃xx/

√
ρ̃ = limω→ω0

ω−ω0√
ρ̃

Im σ̃xx(ω).

5. Stability calculations

We expected that the p-wave backgrounds (3.2) would be unstable against small perturba-

tions that would eventually turn them into backgrounds of the type studied in [4]. These

backgrounds display behavior analogous to a p + ip gap.10 But the opposite seems to be

true: numerical explorations of quasinormal modes close to Tc show that it is the p + ip-

10The analogy to a p + ip gap is apt because the combination τ 1dx + τ 2dy distinguishes an orientation
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wave backgrounds that are unstable, and it seems that they evolve toward pure p-wave

backgrounds, which are stable. In section 5.1 we exhibit the equations describing the per-

turbations of the pure p-wave backgrounds that we thought would be unstable and explain

how the lowest-lying quasinormal modes exhibit stability instead, close to Tc. In section 5.2,

we show that similar perturbations of the backgrounds studied in [4] exhibit an instability

slightly below Tc.

5.1 Quasinormal frequencies of p-wave backgrounds

Let us begin by explaining why we thought p-wave backgrounds would be unstable. At

T = Tc, both the τ1dx mode and the τ2dy directions exhibit marginally stable modes. So a

natural expectation is that both become unstable for T < Tc. Yet the p-wave backgrounds

described in section 3 involve only τ1dx, whereas the p+ ip-wave backgrounds of [4] involve

the combination τ1dx+ τ2dy. In the latter case we are taking advantage of both directions

of instability, and it seems reasonable that such a configuration should be preferred. But

this reasoning ignores the non-linearities of the Yang-Mills equations. It turns out that

condensing in the τ1dx direction stabilizes against condensation in the τ2dy direction —

at least, close to Tc. That stabilization is what we are going to address in this section.

Starting from the backgrounds (3.2), we want to study τ2dy perturbations, which is

to say a2
y. At the linearized level, a2

y couples with a1
y, so we are forced to examine the

combined perturbation A→ A+ a, where

a = e−iωt
(

a1
yτ

1 + a2
yτ

2
)

dy . (5.1)

The equations of motion read

[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2

]

a1
y −

2iωL2r2Φ̃

(r3 − 1)2
a2

y = 0

[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
− w̃2

r(r3 − 1)

]

a2
y +

2iωL2r2Φ̃

(r3 − 1)2
a1

y = 0 . (5.2)

The appropriate boundary conditions for quasinormal modes are that a1
y and a2

y should

vanish at the boundary of AdS4 and that a should be a function only of the infalling co-

ordinate t + 1
4πT log(r − 1) at the black hole horizon (where, as usual, rH = 1). These

conditions can be simultaneously satisfied only for certain complex quasinormal frequen-

cies ω. Since we assumed e−iωt time dependence, quasinormal frequencies with negative

on R
2 and implies a spontaneous magnetization. To see this, note first that the positive charge of the

black hole under U(1)3 privileges τ 3 over −τ 3. The structure constants ǫabc of SU(2) then privilege the

ordering (τ 1, τ 2) over (τ 2, τ 1), because having distinguished the positive τ 3 direction in the Lie algebra lets

us set c = 3. Finally, τ 1dx + τ 2dy “locks” this orientation in the Lie algebra to an orientation dx ∧ dy on

R
2. More physically, a contribution w(τ 1dx + τ 2dy) to A means that there is a term w2τ 3dx ∧ dy in F ,

representing a spontaneous magnetization that again picks out an orientation dx ∧ dy in R
2. In any case,

the symmetries of this state are clearly those of a p + ip gap whose ip component is of identical magnitude

to its p component, so that the gap is uniform in magnitude but has a phase that rotates by 2π as one goes

once around the Fermi surface.
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Figure 6: Quasinormal frequencies corresponding to the perturbation (5.2) of the p-wave super-

conducting background (3.2) near the critical temperature. The quasinormal mode spectrum is

symmetric about the imaginary axis, and we are only showing the quasinormal frequencies with

non-negative real parts. The arrows are in the direction of decreasing temperature, and the num-

ber displayed next to each quasinormal frequency represents T/Tc. The blue points correspond

to backgrounds with no condensate above Tc; the brown points correspond to backgrounds with

no condensate below Tc; and the red points correspond to superconducting backgrounds below Tc.

The superconducting backgrounds also have a quasinormal mode at ω = 0 (see main text) which

is not displayed. The backgrounds with no condensate below Tc have quasinormal frequencies with

positive imaginary parts, indicating an instability. The other backgrounds (namely normal state

above Tc and superconducting below Tc) appear to be stable.

imaginary parts correspond to stable modes, while those with positive imaginary parts

correspond to unstable modes. Solutions with purely real ω correspond to true normal

modes of the system. From the symmetries of the equations (5.2) and of the boundary

conditions described above, it follows that if ω is a quasinormal frequency, then so is −ω∗.

So let’s restrict attention to quasinormal frequencies with Reω ≥ 0. Figure 6 shows how

the lowest-lying quasinormal frequencies behave as functions of temperature close to Tc.

Above Tc, the normal state is stable, and the quasinormal modes come in degenerate pairs

with the same ω. As we mentioned earlier, there are two quasinormal modes that become

marginally stable at Tc: their frequencies go to zero. One of these modes, involving only

a1
y, stays right at ω = 0 below Tc on the superconducting branch. It is a Goldstone mode

describing spatial rotations of the condensate. The other mode is stable on the supercon-
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ducting branch below Tc. What makes it stable is the −w̃2

r(r3−1)
term in the second equation

of (5.2). This term is like a positive, r-dependent contribution to the mass term of the

gauge boson. Dropping this term amounts to passing to the normal state below Tc, and

our normal investigation showed that this state is unstable. So the −w̃2

r(r3−1) term is the

advertised stabilization mechanism, and it is evidently due to the non-linearities of the

Yang-Mills equations of motion.

5.2 Quasinormal frequencies of p+ ip-wave backgrounds

We now wish to show that, in the large gL limit, the p+ ip backgrounds studied in [4] are

unstable, at least for T close to Tc. The instability decreases the ip component of the gap

and appears likely to lead the system into a p-wave state like (3.2). Our strategy is to find

out what happens to the modes which are marginally stable at Tc as we go slightly away

from the critical temperature on the superconducting and normal branches.

At large g, the gauge field ansatz for the circularly polarized backgrounds is

A = Φ(r)τ3dt+ w(r)
(

τ1dx+ τ2dy
)

, (5.3)

and it is again convenient to define

Φ̃ = gL2Φ w̃ = gL2w . (5.4)

In the large g limit there is no back-reaction on the metric, so the metric is simply (3.1).

The equations of motion for Φ̃ and w̃ are similar to (3.4). They are given explicitly in (B4)

of [4], and we will not reproduce them here.

There are many ways in which one can perturb the background (5.3), but the pertur-

bations that might show an instability towards converting p + ip into p should be of the

form

a = e−iωta1(τ
1dx− τ2dy) + e−iωta2(τ

2dx+ τ1dy) . (5.5)

The a1 perturbation changes the relative magnitude of the p and ip components of the

background ansatz (5.3). Nothing in the ansatz (5.3) picks out whether τ1dx or τ2dy is

the p-wave part (as opposed to the ip part) so changing the relative size of these two

components with a linear perturbation can be interpreted as decreasing the ip component

without loss of generality. The a2 component is a 90◦ spatial rotation of the a1 component.

The linearized equations for a1 and a2 are

[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
+

w̃2

r(r3 − 1)

]

a1 +
2iωL2r2Φ̃

(r3 − 1)2
a2 = 0

[

∂2
r +

2r3 + 1

r(r3 − 1)
∂r +

r2(ω2L4 + Φ̃2)

(r3 − 1)2
+

w̃2

r(r3 − 1)

]

a2 −
2iωL2r2Φ̃

(r3 − 1)2
a1 = 0 . (5.6)

The perturbations should take the form of infalling waves close to the horizon and should

vanish at the boundary, as in the case of the linearly polarized backgrounds examined in

the previous section. Only for discretely many quasinormal frequencies are these boundary

conditions satisfied.
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Figure 7: Quasinormal frequencies corresponding to the perturbation (5.5) of the p + ip-wave

background (5.3) near the critical temperature. The spectrum of quasinormal modes is symmetric

about the imaginary axis, and we are only showing the quasinormal frequencies with non-negative

real parts. The arrows are in the direction of decreasing temperature, and the number displayed next

to each quasinormal frequency represents T/Tc. The blue points correspond to backgrounds with

no condensate above Tc; the brown points correspond to backgrounds with no condensate below Tc;

and the red points correspond to superconducting backgrounds below Tc. The backgrounds with no

condensate above Tc, as well as the superconducting ones below Tc, have quasinormal frequencies

with positive imaginary parts, indicating an instability. The backgrounds with no condensate above

Tc are likely to be stable.

When w̃ = 0, equations (5.6) are the same as the equations for a1
y and a2

y given in (5.2),

so at zero condensate the quasinormal modes coincide with the ones displayed in figure 6.

When T < Tc we find an instability whether or not there is a condensate: see figure 7.

This result could perhaps have been anticipated by noting that the w̃2/r(r3 − 1) terms in

(5.6) enter with the opposite sign from the way they entered (5.2). So instead of tending

to stabilize perturbations, they tend to destabilize them. It’s worth noting, however, that

w̃ is the coefficient of τ1dx in (5.2), whereas it is the coefficient of τ1dx + τ2dy in (5.6).

So, the functional forms of w̃ will differ in the two cases, becoming equal only in the limit

T → Tc.
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6. Discussion

The distinguishing feature of the superconducting black holes constructed in this paper is

that the condensate is anisotropic, in the sense of picking out the x direction as preferred.

This is in contrast to earlier constructions [1 – 4]. What is special about the x directions

is that the conductivity in this direction, σxx, becomes large at small but non-zero ω. So

far, the situation is similar to p-wave superconductors. But in real materials, impurity

scattering would keep σxx finite for small non-zero ω, whereas in our setup, the only

upper bound comes from the effects of finite temperature. The biggest difference from real

materials — from the perspective of the electromagnetic response — is that σyy displays

gapped dependence, similar to what was found for an s-wave construction in [3]. In real

p-wave materials, the gap vanishes at θ = 0 and θ = π but has finite slope there. Gapped

σyy suggests instead an infinitely narrow node in the gap: the slope of ∆ as a function

of θ is infinite at θ = 0 and π. To put it another way, the states which usually occupy a

Dirac cone near a p-wave gap have been squeezed into a purely one-dimensional structure,

at least in the limit of low energy. We emphasize that this picture of an infinitely narrow

node in the gap is entirely heuristic, given that we do not have a microscopic description

of the condensate in the language of a dual CFT. What we can say most clearly in the

CFT language is that there is an SU(2) current algebra, and when there is a strong enough

chemical potential for the charge density J3
t , the component J1

x develops an expectation

value. We are tempted to conjecture that Ja
m ∼ ψ̄iγmτ

a
ijψi for some fermion fields ψi in a

representation of SU(2). Then the condensate is composed of fermion pairs created by J1
x ,

which have one unit of angular momentum.

Our results are preliminary in various ways:

1. We didn’t consider back-reaction of the gauge field on the metric. Back-reaction can

be suppressed by taking the gauge coupling large, but this limit is non-uniform in

that as T → 0, the A1
x component of the gauge field gets larger and larger at the

horizon, demanding a bigger value of the gauge coupling to justify the neglect of

back-rection.

2. Our conductivity calculations do not allow for spatial momentum. In other words,

we calculated a retarded two-point function GR(ω, 0) of J3
i at non-zero frequency

but zero spatial momentum. A study of the electromagnetic response at non-zero

k might help consolidate the heuristic Fermi-surface picture we have offered, or it

might invalidate it and suggest a different interpretation.

3. We encountered some curious numerical coincidences, ranging from Tc/
√
ρ̃ ≈ 1/8

to the scaling of the “scattering rate” 1/τ and the small ω limits of 1/σ̃xx and σ̃yy

approximately as ρ̃2
n rather than some fractional power of ρ̃n. The latter coincidence

evokes the idea that the behavior of quantities like the scattering rate are largely

controlled by kinematic factors of two incoming quasi-particles. It would be inter-

esting if some of these numerical coincidences could be understood in terms of exact

solutions to the Yang-Mills equations, or in terms of some systematic approximation

scheme rather than brute-force numerics.
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4. The scope of our stability calculations is very restricted: not only have we limited

ourselves to the no-back-reaction limit, but we also stayed close to Tc. Moreover,

we do not claim to have considered every possible perturbation, only the ones that

seemed obvious candidates for exhibiting instabilities. It would clearly be desirable

to be more thorough.

5. String theory or M-theory compactified on a manifold of positive curvature leads,

often if not typically, to a theory of gauged supergravity which would include the

Einstein-Yang-Mills lagrangian, with particular relations between the gauge coupling

and the cosmological constants enforced by supersymmetry (assuming there is super-

symmetry). Does superconductivity occur in any such construction? Is it the gauge

bosons which condense first, or are there charged scalars which condense? Is there

a higher-dimensional interpretation — for example, some sort of Gregory-Laflamme

instability involving the compact dimensions?

6. The constructions we have discussed probably generalize to higher dimensions.

7. We have limited ourselves entirely to classical configurations, excluding any discussion

of fluctuations. This would seem problematic in two spatial dimensions because of

infrared divergences, but fluctuations are suppressed when the radius of AdS4 is much

larger than the Planck scale, corresponding to a large N limit in the dual CFT. But

to understand the condensate’s contribution to the specific heat, presumably one

should consider fluctuations.

We hope to report on some of these issues in the future.
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A. Conductivity and resistivity matrices

The conductivities σxx and σyy that we computed in section 4 are the σ33
xx and σ33

yy entries

of a generalized conductivity matrix σab
mn given by

σab
mn(ω) =

i

ω
GR,ab

mn (ω, 0) , (A.1)

where

GR,ab
mn (ω,~k) = −i

∫

d4x eiωt−i~k·~xθ(t)〈[Ja
m(t, ~x), Jb

n(0, 0)]〉 . (A.2)

The matrix σab
mn is block-diagonal, each block corresponding to a set of gauge perturbations

in the bulk that mix with each other. To compute GR,ab
mn from the bulk, it is useful to pass

– 25 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
3

to a complexified gauge perturbation, A→ A+a, and write the field strength perturbation

as F → F + f . Then f = Da, where D = d+ gA is the gauge-covariant derivative, and we

need to work only to leading order in a. The quadratic action is

S2 =
1

2κ2

∫

d4x
√−g

(

−1

2
fa∗

µνf
µνa

)

. (A.3)

From now on let’s focus on the 3×3 block corresponding to J1
t , J2

t , and J3
x—in other words,

we keep only a1
t , a

2
t , and a3

x non-zero and set all the other aa
m to zero. Integrating (A.3)

by parts, we obtain

S2 =
1

2κ2

∫

d4x
[

aa∗
µ

(

eom for aa
µ

)

+ ∂rJ
]

, (A.4)

where

J =
1

2κ2

r2

L2

(

a1∗
t ∂ra

1
t + a2∗

t ∂ra
2
t

)

+
1

2κ2

1 − r3

L2r
a3∗

x ∂ra
3
x . (A.5)

We henceforth set L = 1 to further simplify notation.

In axial gauge, once ω is specified, there is a unique solution to (4.14) and (4.15)

subject to the infalling boundary conditions (4.16). The uniqueness arises because there’s

only one solution at the horizon that is infalling in the sense expressed by (4.16). Because

it’s unique, this infalling solution doesn’t allow for an independent deformation of the

boundary theory with respect to J1
t , J2

t , and J3
x by prescribing the values of β1

t , β2
t , and

β3
t independently. We should therefore consider gauge equivalents of it by writing

â1
t = α̃0a1

t − iωα̃1 − Φ̃α̃2

â2
t = α̃0a2

t − iωα̃2 + Φ̃α̃1

â3
x = α̃0a3

x + w̃α̃2 . (A.6)

The “gauge parameter” α̃0 is just a multiplicative rescaling factor, which we are free to

include. α̃1 and α̃2 should be independent of r at least on some neighborhood of the

boundary.

To compute the two-point functions of the Ji’s, we start by replacing all occurrences

of aa
µ in (A.5) by the gauge equivalents âa

µ defined in (A.6). Next, we notice that

α̃0A
1(0)
t − iωL2α̃1 − Φ̃α̃2 = β1

t ≡ −βt
1

α̃0A
2(0)
t − iωL2α̃2 + Φ̃α̃1 = β2

t ≡ −βt
2

α̃0A3(0)
x + w̃α̃2 = β3

x ≡ βx
3 , (A.7)

where the A
a(s)
m were defined in (4.17). Finally, we take mixed derivatives ∂2/∂β∗∂β of J ,

evaluated at the boundary, to obtain the desired two-point functions. Treating J |bdy as

the only contribution to the on-shell action means neglecting possible contributions from

the horizon, which can be justified along the lines of [19]. We find

J |bdy =
1

2κ2

(

βt∗
1 βt∗

2 βx∗
3

)

iωσ̃







βt
1

βt
2

βx
3






, (A.8)
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with

σ̃11
tt = σ̃22

tt =
i

ω

p̃0p̃1

p̃2
0 − ω2

σ̃12
tt = −σ̃21

tt = − p̃1

p̃2
0 − ω2

σ̃13
tx = − i

ωA
3(0)
x

(

A
1(1)
t − p̃1

A
1(0)
t p̃0 + iωA

2(0)
t

p̃2
0 − ω2

)

σ̃23
tx = − i

ωA
3(0)
x

(

A
2(1)
t − p̃1

A
2(0)
t p̃0 − iωA

1(0)
t

p̃2
0 − ω2

)

σ̃31
xt = − i

ω

p̃0W̃1

p̃2
0 − ω2

σ̃32
xt =

W̃1

p̃2
0 − ω2

σ̃33
xx = − i

ωA
3(0)
x

(

A3(1)
x + W̃1

A
1(0)
t p̃0 + iωA

2(0)
t

p̃2
0 − ω2

)

. (A.9)

σ̃33
xx is the same as the one obtained in (4.19) because the calculation that led to (4.19) is

a special case of the one above. The far-field limit of the two constraint equations (4.18)

enforce the relations σ̃13
tx = σ̃31

xt and σ̃23
tx = −σ̃32

xt , so

σ̃ =



















i

ω

p̃0p̃1

p̃2
0 − ω2

− p̃1

p̃2
0 − ω2

− i

ω

p̃0W̃1

p̃2
0 − ω2

p̃1

p̃2
0 − ω2

i

ω

p̃0p̃1

p̃2
0 − ω2

− W̃1

p̃2
0 − ω2

− i

ω

p̃0W̃1

p̃2
0 − ω2

W̃1

p̃2
0 − ω2

σ̃33
xx



















, (A.10)

with σ̃33
xx being given in (A.9). Since p̃0, p̃1, and W̃1 are real, the only contribution to the

hermitian (dissipative) part of σ̃ comes from σ̃33
xx.

It is worth noting that given the conductivity matrix σ̃ one can compute its inverse

ρ̃ = σ̃
−1. After imposing (4.18), we obtain

ρ̃ =















−iω p̃0

p̃1
+
W̃ 2

1

p̃2
1

ρ̃33
xx −ω

2

p̃1
ρ̃33

xx

ω2

p̃1
−iω p̃0

p̃1
0

ρ̃33
xx 0 ρ̃33

xx















, (A.11)

where ρ̃33
xx can be computed from

1

ρ̃33
xx

= − i

ω

A
3(1)
x +A

1(1)
t W̃1/p̃1

A
3(0)
x

. (A.12)
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Here 1/ρ̃33 is just the numerical reciprocal of ρ̃33, not a matrix inverse. Of the entries

of ρ̃, ρ̃33
xx is the most interesting, because it represents E3

x/J
3
x with the constraint that

J1
t = J2

t = 0. Using again the far-field constraints (4.18), we obtain

Im
1

ρ̃33
xx

− Im σ̃33
xx = − W̃ 2

1 p̃0

ωp̃1(p̃2
0 − ω2)

. (A.13)

Because W̃1, p̃0, and p̃1 have no ω dependence, (A.13) implies that Re 1/ρ̃33
xx and Re σ̃33

xx

differ only by a sum of three delta functions at ω = 0 and ±p̃0. The form of (A.12)

suggests that Im 1/ρ̃33
xx doesn’t have poles at ω = ±p̃0. Numerical evaluations confirm this.

So Re 1/ρ̃33
xx doesn’t have a delta function singularity at ω = ±p̃0.

The singularity structure at ω = ±p̃0 is an unexpected feature of our calculations.

Our heuristic understanding of it hinges on thinking of the boundary limit of A3
t as a

chemical potential for the charge density J t3. The fluctuations that we are tracking in

(A.8) include small rotations of the J t3 charge condensate into the J t1 and/or J t2 directions.

Assuming that the total magnitude of the condensate remains fixed, this implies a slight

decrease of the J t3 condensate. The chemical potential fights against this and tends to

pull the condensate back to the J t3 direction, similar to gravity’s pull on a pendulum. In

the approximations we use, this resonance is undamped, but some kind of corrections —

perhaps loop corrections on the gravity side — might damp it and smooth out the delta

function singularity into a peak.
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